An Open-label, Phase 1/2 Trial of Gene Therapy 4D-310 in Adult Males with Fabry Disease

Jerry Vockley, MD, PhD University of Pittsburgh, Pittsburgh, Pennsylvania, USA

4D-310 Product Design: Unique Dual Mechanism-of-Action

INVENTED FOR LOW DOSE IV DELIVERY TO TARGET ORGANS INCLUDING HEART & HIGH SERUM AGA

Patient with Fabry Disease

Blood vessel Delivery dysfunction to liver Cardiac dysfunction Kidney dysfunction Conventional naturally occurring vectors Enhanced biodistribution to affected organs Enhanced Blood vessel dysfunction delivery to heart Cardiac dysfunction Kidney dysfunction 4D-310

Biodistribution to affected organs

PRODUCT DESIGN

- Vector: CI02 Targeted & Evolved AAV
- Transgene: GLA (encodes AGA enzyme)
- Promoter: Ubiquitous

4D-310 Widespread AGA Gene Expression in Fabry Disease Target Organs

Heart

NHP & FABRY MOUSE AGA IMMUNOHISTOCHEMISTRY (IHC) & IN SITU HYBRIDIZATION (ISH)

ERT & Liver-directed AAV – No AGA in Cardiomyocytes: Fabry Mice

ERT (Img/kg) JIMD 2016;39:293; HMG 2017;26:1182

Liver-directed AAV GT

4D-310 AGA in Heart: Non-human Primates

AGA transgene expression in NHP cardiomyocytes:

- Cardiac Troponin I (IHC; teal)
- 4D-310 AGA mRNA (ISH; purple)

4D-310 AGA Plasma Activity in Non-human Primates (NHPs) DOSE-DEPENDENT STABLE AGA ACTIVITY IN PLASMA OF CYNOMOLGUS MONKEYS

*One NHP in the low dose cohort has been excluded from the dataset as a positive statistical outlier as it exhibited AGA activity that was 66 to 124 standard deviations higher than the average of other NHPs treated with low dose 4D-310

4D-310 Study Design: Broad Enrollment Criteria

OPEN-LABEL, PHASE 1/2 TRIAL IN ADULTS WITH FABRY DISEASE

Dashed arrow = optional arm if low titer subjects identified

*n=maximum of 42 subjects if DLTs are observed and subjects are added to cohorts to provide additional safety information and/or confirm the selected dose

KEY INCLUSION CRITERIA

- Males \geq 18 years of age
- Pathogenic GLA mutation
- Classic <u>OR</u> Late-onset FD with LVH
- ERT-On, ERT-Off OR ERT-naïve
- Anti-AGA Ab status positive <u>OR</u> negative^{**}

KEY EXCLUSION CRITERIA

- High titer 4D-310 NAb
- eGFR <45 mL/min/1.73m2
- LVEF <45% (Echo)

PRIMARY ENDPOINT

Incidence & severity of adverse events

KEY SECONDARY ENDPOINT

Serum AGA Activity: change from baseline

EXPLORATORY ENDPOINTS

• Cardiac Imaging & QoL: change from baseline

Baseline Patient Characteristics

STUDY ENROLLED CLASSIC FABRY DISEASE PATIENTS WITH ANTI-AGA ANTIBODY POSITIVITY

	Patient I	Patient 2	Patient 3
Age	51 years	32 years	26 years
Race/Ethnicity	White/Hispanic or Latino	White/Not Hispanic or Latino	White/Not Hispanic or Latino
Disease classification	Classic	Classic	Classic
Mutation	c.1023A>C (p.E341D)	c.708G>T (p.W236C)	c.974G>A (p.G325D)
Serum AGA activity (nmol/hr/mL)	0.42	0.00	0.30
ERT experience	Yes	Yes	Yes
ERT status at enrollment	ERT-ON	ERT-OFF	ERT-ON
Serum lyso-Gb3 (ng/mL)	6.28	101.00	8.78
Anti-AGA antibody titer	l:947 (low)	l:99,900 (high)	I:I3,900 (mid)
eGFR (mL/min/1.73m ²)	107	130	125

Reference range:

Serum AGA activity: 4.44-27.42 nmol/hr/mL

Serum Lyso-Gb3:

• eGFR: > 60 mL/min/1.73m2

Stable High-Level AGA Activity After Discontinuation of ERT: 10- to 14-Fold Mean Normal PATIENTS I & 3 WITH POSITIVE ANTI-AGA ANTIBODY TITERS: FOLLOW-UP 20-37 WEEKS

Serum AGA activity: mean normal = 9.9 nmol/hr/ml; normal range: 4.44 – 27.42 nmol/hr/mL;

Stable AGA Activity In Normal Range Despite High-Level Anti-AGA Antibody Titers PATIENT 2 WITH HIGH ANTI-AGA ANTIBODY TITER (~1:100,000): FOLLOW-UP 13 WEEKS

BASELINE CHARACTERISTICS

	Anti-AGA Ab Status	ERT Status (lyso-Gb3)	ERT Experience		
_	1:99,900 (24X mean normal)	ERT- OFF; high lyso-Gb3	Yes		

Serum AGA activity: mean normal = 9.9 nmol/hr/ml; normal range: 4.44 – 27.42 nmol/hr/mL;

Lyso-Gb3 normal range: < 1.0 ng/mL

* = Patient 2 week 6 lyso-Gb3 datapoint not evaluable due to hemolysis

Cardiac Imaging: MRI & Echo

ASSESSING BIOCHEMICAL COMPOSITION (SUBSTRATE ACCUMULATION) & FUNCTION (CONTRACTILITY)

• Cardiac MRI (cMRI):

<u>Sphingolipid Accumulation</u>: Measured by **Native T1** - decreased in Fabry disease

Echocardiography:

 <u>Cardiac Contractility</u>: Measured by Global Longitudinal Strain (GLS)

Central Reading Center:

• Duke Clinical Research Institute

Ref: Pica et al. 2014;16:99

Cardiac Imaging (Patient I): 6-Month Timepoint CARDIAC MRI (CMRI) NATIVETI & GLOBAL LONGITUDINAL STRAIN AFTER 4D-310

4D-310, Patient 1		Patients on ERT, n=18 (literature)		
Baseline	949.8	Baseline	916 ± 52	
Wk 26	979.8	l Year	912 ± 50	

4D-310, F	Patient I	Patients on ERT, n=18 (literature)				
Baseline	-164	Baseline	-13.2 ± 3.4			
Wk 26	-18.7	l Year	-12.1 ± 4.8			

¹Patient I was on ERT for 17 years prior to 4D-310 dosing

²Nordin et al. *Circ Cardiovasc Imaging*. 2019. Patients were on ERT with median duration of 4.2 (1.4-12.2) years

GLS (Echo, 4-chamber view), normal: \geq -15.9%

*Minimal detectable difference (MDD):

- Native T1: 29 ms (Altaha, J Am Coll Cardiol Img 2020;13:951)
- GLS: 1.5% (Lambert, *Heart* 2020;106:817)

Cardiac Quality of Life: Patient-Reported Outcomes

KCCQ SCORES 12-38 WEEKS AFTER 4D-310

Patient	Assessment Timepoint	Kansas City Cardiomyopathy Questionnaire (KCCQ) Total score range = 23-133 (higher score = less severe)		
	Day - I	121		
Patient I	Wk 12	122		
	Wk 26	121		
	Wk 38	123 (+2)		
Detient 2	Day - I	79		
Fallent 2	Wk 12	90 (+11)		
Patient 3	Day - I			
	Wk 12	116 (+5)		
Minimal clinically important difference*		5 points		

Interim Safety & Tolerability Summary

MANAGEABLE SAFETY PROFILE TO DATE; 12-38 WEEKS FOLLOW UP AFTER DOSING

- 4D-310 demonstrated a manageable safety profile
- No dose-limiting toxicities
- No cardiac toxicity
- No clinically significant liver toxicity
- Patient 2 (anti-AGA Ab HIGH): single episode atypical hemolytic uremic syndrome (aHUS)
 - Transient & self-limited
 - Hospitalization for observation (resulting in SAE)
 - Discharged after 4 days: observation & hydration
 - Received no complement inhibitor & no dialysis
 - Resolved fully

aHUS-Associated Labs: I Pt Self-Limited and Transient aHUS

COMPLEMENT ACTIVATION RELATED LABORATORY VALUES: CTCAE GRADE

	Baseline	Day 8	Day 15	Wk 4	Wk 6	Wk 8	Wk 12	Wk 26	Wk 38
Creatinine									
Patient I	-	-	-	-	-	-	-	-	-
Patient 3	-	_*	-	-	N.A.	-	-		
Patient 2	-	3**	2**	-	-	-	-		

Platelet cou	nt								
Patient I	-	-	-	-	-	-	-	-	-
Patient 3	-	-	-	-	-	-	-		
Patient 2	-	2	I	-	-	-	-		

- Within normal range

*Transient Grade 2 proteinuria; Grade 1 LDH elevation; PT/PTT within normal limits; platelet within normal range (intranormal decrease); d-dimer mildly elevated; C4 complement 11 mg/dL (ref range 15-53 mg/dL)

**Patient 2 creatinine values at Days 8 & 15: 4.37 and 3.54 mg/dL, respectively.

Liver Function Labs: No Evidence of Significant Toxicity

LIVER LABORATORY VALUES: CTCAE GRADE

	Baseline	Day 8	Day 15	Wk 4	Wk 6	Wk 8	Wk 12	Wk 26	Wk 38
AST									
Patient I	-	-	-	-	-	-	-	-	-
Patient 3	-	-	-	-	N.A.	-	-		
Patient 2	-	-	-	-	-	-	*		
ALT									
Patient I	-	-	-	-	-	-	-	-	-
Patient 3	-	-	-	-	N.A.	I	-		
Patient 2	-	-	-	-	-	-	*		
Bilirubin									
Patient I	-	-	-	-	-	I	-	-	-
Patient 3	-	-	-	-	N.A.	-	-		
Patient 2	-	-	-	-	-	-	-		

- Within normal range; *Grade I ALT, AST subsequently resolved

Cardiac Safety Studies: No Evidence of Toxicity

	Baseline	Wk 4	Wk 8	Wk 26					
Troponin T (marker of cardiomyocyte injury)									
Patient I	-	-	-	-					
Patient 3	-	-	-						
Patient 2	-	-	-						
CK-MB (marker of cardiomyocyte injury)									
Patient I	-	-	-	-					
Patient 3	-	-	-						
Patient 2	-	-	-						
Galectin-3 (ma	rker of matrix	remodeling a	nd inflammatio	on)					
Patient I	-	-	-	-					
Patient 3	-	-	-						
Patient 2	-	-	-						
NT-ProBNP (marker of myocardial stretch)									
Patient I	-	-	-	-					
Patient 3	-	-	-						
Patient 2	-	*	-						

- Within normal range; *Mild elevation (<2 ULN) associated with transient kidney insufficiency

- No evidence of adverse cardiac effects to date:
 - ECG
 - Echocardiography
 - \circ cMRI

Summary: Ongoing 4D-310 Ph 1/2 Clinical Trial DATA CUT-OFF DATE: 1/13/2022

- 4D-310 gene therapy has a unique **dual mechanism-of-action**
- 4D-310 demonstrated a manageable safety profile and no DLTs
- Clinical activity was observed:
 - <u>Serum AGA activity elevated in all three patients</u>: Mean AGA enzyme activity within, or significantly above, the normal range
 - Stable high-level AGA activity following discontinuation of ERT: 10- to 14-fold mean normal
 - <u>Serum lyso-Gb3 substrate decreased significantly</u>: Demonstrated in patient with elevated pretreatment lyso-Gb3 (entered study OFF-ERT)
 - <u>Cardiac endpoints</u>: Preliminary clinical data suggests encouraging effects on cardiac endpoints (biochemical composition, function, QoL)
- Phase I/2 enrollment ongoing in U.S. & APAC clinical trials

Acknowledgements

- All site staff, central reading center (Duke Clinical Research Institute), study participants
 & families
- Co-authors:
 - William R.Wilcox, MD, PhD (Emory University School of Medicine, Atlanta, Georgia)
 - Ozlem Goker-Alpan, MD (Lysosomal Disorders Research and Treatment Center, Inc., Fairfax, Virginia)
 - Damara Ortiz, MD (University of Pittsburgh, Pittsburgh, Pennsylvania, USA)
 - Molly Nie (4D Molecular Therapeutics, Inc.)
 - Jinsong Shen, MD, PhD (4DMT)
 - David Kirn, MD (4DMT)
 - Robert Fishman, MD (4DMT)
 - Raphael Schiffmann, MD (4DMT)