

Harnessing the Power of Directed Evolution for Targeted, Next-Generation Genetic Medicines

Corporate Presentation | November 2024

Legal Disclaimer

This Presentation contains forward looking statements that involve substantial risks and uncertainties. All statements, other than statements of historical facts, contained in this Presentation, including statements regarding our clinical development plans, strategy, future operations, future financial position, prospects, plans, and objectives of management, are forward looking statements. The words "anticipate," "believe," "continue," "could," "estimate," "expect," "intend," "may," "plan," "potential," "predict," "project," "target," "should," "would," and similar expressions are intended to identify forward looking statements, although not all forward looking statements contain these identifying words. We may not actually achieve the plans, intentions, or expectations disclosed in these forward looking statements, and you should not place undue reliance on these forward looking statements. Actual results or events could differ materially from the plans, intentions and expectations. We anticipate that subsequent events and developments will cause our views to change. However, while we may elect to update these forward looking statements in the future, we specifically disclaim any obligation to do so. These forward looking statements should not be relied upon as representing our views as of any date subsequent to the date of this Presentation.

This Presentation discusses our product candidates that are under preclinical study and in clinical trials, and which have not yet been approved for marketing by the U.S. Food and Drug Administration. No representation is made as to the safety or effectiveness of our product candidates for the therapeutic use for which they are being studied.

This Presentation also contains estimates and other statistical data made by independent parties and by us relating to market size and other data about our industry. This data involves a number of assumptions and limitations, and you are cautioned not to give undue weight to such data and estimates. In addition, projections, assumptions and estimates of our future performance and the future performance of the markets in which we operate are necessarily subject to a high degree of uncertainty and risk.

This Presentation shall not constitute an offer to sell or the solicitation of an offer to buy securities.

Boldly Innovating to Unlock the Full Potential of Genetic Medicines for Millions of Patients

© 2024 4D Molecular Therapeutics. All Rights Reserved.

Leading Clinical Stage Next Generation AAV Company

\$551M cash* as of September 30, 2024; Runway through H1 2027

*Includes cash equivalents and marketable securities (unaudited)

Successes & Limitations of Conventional AAV

Opportunity For Targeted Genetic Medicine Vectors & Products

OPPORTUNITY: UNLOCK THE FULL POTENTIAL OF GENETIC MEDICINES BY HARNESSING THE POWER OF DIRECTED EVOLUTION

Platform Solution: ~I Billion Synthetic Capsid Sequences

Step I: Create Massive Diversity in Highly Diverse and Distinct Libraries

Platform Solution: Target Vector Profile Fitness Competition

Steps 2 & 3: Therapeutic Vector Evolution

*Capsid library placed under varying selective pressures // Actual number of selection rounds varies by target

Unlocking the Full Potential of Genetic Medicines: Multiple Large Market Opportunities

VECTOR / DELIVERY	PRODUCT CANDIDATE	INDICATION	ESTIMATED PREVALENCE	RESEARCH CANDIDATE	IND- ENABLING	PHASE 1/2	PHASE 3	PRODUCT RIGHTS
OPHTHALMOLOGY RI00	4D-150	Wet AMD	~3M U.S./EUMM					\$4DMT
		DME	~5M U.S./EUMM					
	4D-125	XLRP	~24K U.S./EUMM					\$ 4DMT
	4D-110	Choroideremia	~13K U.S./EUMM					4DMT
	4D-175	Geographic Atrophy	~2.5M U.S./EUMM					\$ 4DMT
	Undisc. Vector licensed to Astellas	Undisclosed Rare Disease	Undisc.					Astellas
PULMONOLOGY AIOI Aerosol	4D-710	CF Lung Disease (mod. ineligible/intolerant)	~15K WW					\$ 4DMT
		CF Lung Disease (on-modulator)	~90K WW					
	4D-725	AIATD Lung Disease	~200K U.S./EUMM					\$ 4DMT
CARDIOLOGY CI02	4D-310	Fabry Disease Cardiomyopathy	~50-70K U.S./EUMM					🔷 4DMT
CNS B SERIES OF Multiple	Unnamed Led by Arbor	Amyotrophic Lateral Sclerosis	~79k U.S./EU/UK					50/50 WW

Large Market Ophthalmology

Modular Vector: RI00

- 4D-150: Wet AMD & DME
- 4D-175: Geographic Atrophy

© 2024 4D Molecular Therapeutics. All Rights Reserved.

World Class Senior Ophthalmology Leadership Team:

100+ Years of Experience with Six Approvals & Five Launches of Major Products

Robert Kim, MD Chief Medical Officer 30+ years Clinical Science, Clinical Operations, Early- & Late-stage Clinical Development

Dhaval Desai, PharmD Chief Development Officer 20+ years Late-stage Product Development, Medical Affairs & Scientific Communications

 IVERIC
 UNOVARTIS

 Avadeas Company
 UNOVARTIS

 Image: Company
 Image: Company

 Image: Company
 Image: Company
 </t

Christopher Simms Chief Commercial Officer 25+ years Pre-commercial & Commercial, Pre-launch Preparations & Development

Carlos Quezada-Ruiz, MD, FASRS SVP, Therapeutic Area Head, Ophthalmology 20+ years Leads Ophthalmology R&D, Early- & Latestage Clinical Development

Wet AMD is the First of Four Large Market Retina Indications for 4DMT

Market Scope 2023 Retinal Pharmaceuticals Market Report, published Aug 2023. * Excludes patients with DME.

U.S. Wet AMD Market is ~\$6B Today and Will Continue to Grow

Sources: For anti-VEGF market - GlobalData, GrandView Research.

Annual incidence derived from analysis of key publications (Vanderbeek 2011, Rudnicka 2015, Klein 2011 and Fisher 2016), triangulated with IQVIA claims data; population growth calculated from U.S. census projections for ages 65+ in the U.S. Prevalence sourced from Marketscope Retina Market Report 2023; (F) = forecast for 2024

Wet AMD is Still a Major Cause of Vision Impairment & Blindness¹ Despite the Introduction of Anti-VEGF Therapies >15 Years Ago²

- Wet AMD, diabetic macular edema, and diabetic retinopathy are among the leading causes of moderate or severe vision impairment
- Most patients in the real world fail to achieve & maintain visual gains seen in clinical trials
- Major limitation of standard of care is durability

I. Burton MJ, Ramke J, Marques AP, Bourne RR, Congdon N, Jones I, et al. The Lancet Global Health commission on Global Eye Health: vision beyond 2020. Lancet Glob Health. 2021; 9(4):e489–e551. 2. Rosenfeld PJ et al., N Engl J Med 2006;355:1419-31. 3. Holz FG et al. Br J Ophthalmol 2015;99:220-226

Largest Unmet Need in Wet AMD is Durable Efficacy with a Safe Treatment, Despite Recent Approvals of 2nd Generation Anti-VEGFs

ASRS PAT Survey 2018 ASRS PAT Survey 2024² What are the greatest unmet needs regarding wet AMD treatment? Which factors are most important to you when selecting anti-VEGF agent? Long-term safety profile 31.9% 80.0% Improved Efficacy 37.1% supported by real-world data 77.3% Reduced 73.2% Ability to achieve more rapid fluid 42.6% **Treatment Burden** resolution than the standard of care (SoC) 66.1% 42.6% Ability to achieve more complete fluid 6.3% 60.6% Improved Safety resolution than SoC 13.6% 54.6% Improved durability/ Long-Acting/ 80.6% Plot Area .3% reduced treatment burden 77.3% **Sustained Delivery** 70.6% None of these factors are important to 0.4% 37.0% New Treatment MOAs me 0.8% 37.1% U.S. International U.S. International

I. Stone TVV, ed. ASRS 2018 PAT Survey. 2. Han P, ASRS 2024 PAT Survey. PAT, Preferences and Trends.

Products with Incremental Improvements in Durability & Reduction in Treatment Burden Have Become Commercial Blockbusters

Mean no. of injections over Year 0-2: Susvimo (ARCHWAY) vs. Eylea Q8W (VIEW 1 & 2) 2. Regillo et al. *Ophthalmology* 2023; 130:735-7 (ARCHWAY). 3. Schmidt-Erfurth et al. *Ophthalmology* 2014; 121:193-201 (VIEW 1 & 2) 4. Eylea HD: Regeneron publicly available information/company website as of 8/10/23 (PULSAR data) 5. Vabysmo: CDER statistical review; Khanani et al., *Ophthalmology* 2024; 1-13 (TENAYA and LUCERNE) 6. FactSet 2028E WW sales for Eylea HD and Vabysmo; FactSet for Eylea and Lucentis peak WW sales *The data presented above are based on cross-study comparisons and are not based on any head-to-head clinical trials. Cross-study comparisons are inherently limited and may suggest misleading similarities and differences. The values shown in the cross-study comparisons are directional and may not be directly comparable.

Ideal Therapy to Address Key Unmet Needs

4D-150 Designed for Sustained Intraretinal Expression of Anti-VEGF & Blockade of VEGF-C Production to Address Key Unmet Needs

Key 4D-150 Takeaways in Wet AMD

Tolerability: Well-tolerated with profile comparable to approved anti-VEGF agents

4FRONT Phase 3 Design: Maximizes probabilities of clinical, regulatory & commercial success

Data cutoff (clinical activity data), September 3, 2024. Data cutoff (safety data), August 23, 2024.

Treatment Need in Wet AMD Population is Heterogeneous: Development Moved From Highest Need to a Broad Need Population

Data on PRN ("as needed") injections received after 3 loading doses demonstrates a **high degree of heterogeneity in anti-VEGF needs in patients with wet AMD** (N=232)

- Phase I/2a: Severe Population
 - <u>Objectives</u>: Safety, clinical POC
 - <u>Enrolled</u>: Highest anti-VEGF need & most severe disease activity population with long disease duration

Phase 2b: Broad Population

- **Objectives:** Efficacy, Phase 3 dose & population
- <u>Enrolled</u>: Broad range of patients with variable anti-VEGF need, disease severity & disease duration

*Lucentis.com

Initial Vision Gains Achieved by First 3 Loading Injections: Objective of 4D-150 Sustained Delivery is to Maintain Disease

ARCHWAY (SUSVIMO)

PULSAR (EYLEA HD)

TENAYA / LUCERNE (VABYSMO)

Initial CST Decline Achieved by **First Loading Injection:** Objective of 4D-150 Sustained Delivery is to **Maintain Disease**

ARCHWAY (SUSVIMO)

TENAYA / LUCERNE (VABYSMO)

I. Holekamp NM et al. Ophthalmol 2022; 129(3):295-307 (ARCHWAY); 2. Lanzetta P et al. Lancet 2024; 403:1141-52 (PULSAR); 3. Khanani A et al. Ophthalmol 2022; 131(8):914-26 (TENAYA & LUCERNE)

4D-150 Phase 1/2 Wet AMD Development Plan Included Recently Diagnosed Patients in Phase 2b

4DMT © 2024 4D Molecular Therapeutics. All Rights Reserved.

PRISM Population Compared to Recent Phase 3 IVT Wet AMD Studies

Asset	Study	Population	Mean time since Dx	Mean CST	Mean number of injections in previous year	Number of Loading Doses
EYLEA	VIEW1/2	Treatment Naïve	NA	313-342 μm	0	3
BEOVU	HAWK/HARRIER	Treatment Naïve	NA	360-370 μm	0	3
VABYSMO	TENAYA/LUCERNE	Treatment Naïve	67-74% within I month	350-360 μm	0	4
EYLEA HD	PULSAR	Treatment Naïve	NA	370 µm	0	3
SUSVIMO	Archway	Previously Treated	5.6 months	177 μm (CPT)	5	0*
4D-150 Ph1/2a (3E10)	PRISM	Previously Treated	3.7 years	425 µm	10.2	I
4D-150 Ph1/2a (AFLB)	PRISM	Previously Treated	2.1 years	419 µm	9.3	I
4D-150 Ph2b (3E10)	PRISM	Previously Treated	I.8 years	336 µm	4.4	2

I. Heier JS et al. Ophthalmol 2012; 119(12):2537-48 (VIEW 1 & 2) 2. Dugel PU et al. Ophthalmol 2020; 127:72-84 (HAWK & HARRIER) 3. Khanani A et al. Ophthalmol 2024; 131(8):914-26 (TENAYA & LUCERNE) 4. Lanzetta P et al. Lancet 2024; 403:1141–52 (PULSAR) 5. Holekamp NM et al. Ophthalmol 2022; 129(3):295-307 (ARCHWAY)

Wet AMD Population Matters:

Comprehensive Phase 1/2 Program Studied Broad Range of Disease Severity

Cohort	Phase I/2a (Dose Exploration & Expansion)	Phase 2b (Population Extension)	Phase 2b Subgroup (Population Extension)	
Population	Severe	Broad	Recently Diagnosed	
	~10 prior injections L12M	~4-5 prior injections L12M	~3 prior injections L12M	
	>400 μm mean CST	<350 µm mean CST	~300 µm mean CST	

PRISM

PRISM

4D-150 vs. Aflibercept in Severe Patients (Phase 1/2a)

Visual Acuity & Anatomy Comparable to Q8W AFLB 2mg with Robust Reduction in Treatment Burden

PRISM

4D-150 in Broad Population (Phase 2b)

Visual Acuity & Anatomy Stable with Robust Reduction in Treatment Burden

PRISM

4D-150 in Recently Diagnosed (≤6 Months) Population from Phase 2b

Visual Acuity & Anatomy Stable With Robust Reduction in Treatment Burden

4D-150 Continues to be Well Tolerated

- No 4D-150-related serious adverse events
- Rate of 3E10 dose 4D-150–related intraocular inflammation: Wet AMD
 - **2.8%** (2 of 71) had transient 1+VC at any timepoint
 - 99% (70 of 71) completed steroid prophylaxis taper on schedule
- No 4D-150—related hypotony, endophthalmitis, vasculitis, choroidal effusions or retinal artery occlusions observed to date
- Rate of intraocular inflammation: **DME**
 - 0% treated at any dose (n=22) had IOI at any timepoint

All 4D-150 3E10 vg/eye-Treated Wet AMD Patients (N=71)

Highest SUN/NEI Score (4D-150–Related)*

4FRONT Phase 3 Program in Treatment Naïve Wet AMD Population

Design Maximizes Probabilities of Clinical, Regulatory & Commercial Success

Informed by:

- PRISM interim data
- Phase 3 designs of marketed intravitreal anti-VEGF products
- Regulatory discussions with FDA & EMA under RMAT & PRIME

Goals:

- Maximize probability of success for:
 - <u>Primary endpoint:</u>
 BCVA non-inferiority
 - <u>Secondary endpoint:</u>
 treatment burden reduction
 - Commercialization

Design features:

 Anti-VEGF responsive on study to be randomized

3

- 4D-150 3E10 vg/eye dose
- Durezol topical eyedrops
- 3 monthly loading doses applied to both arms
- Comparator arm 2Q8W dosing without supplemental injections

4FRONT-1

4FRONT-I Phase 3 Wet AMD Study Design

Primary Endpoint: BCVA Noninferiority of 4D-150 3E10 vg/eye to Aflibercept 2mg Q8 weeks

Designed to Drive Clinical, Regulatory & Commercial Success

ASPECTRA Phase 2 Study Evaluating 4D-150 in Diabetic Macular Edema, a 2nd Large Market Indication

O Study assessments

Key Inclusion Criteria

- Type I or II diabetes mellitus with macular thickening secondary to DME involving the center of the fovea
- BCVA: 25-83 ETDRS letters
- CST: ≥350 µm confirmed by independent reading center
- On-study anti-VEGF response prior to 4D-150 injection

Primary Endpoint

• Annualized number of aflibercept injections in the study eye

Key Secondary Endpoints

- Safety
- Mean cumulative number of aflibercept injections over time
- BCVA & CST: Δ from baseline
- % of subjects with a ≥2 and ≥3-Step Diabetic Retinopathy Severity (DRS) improvement from baseline

DME, Diabetic Macular Edema; BCVA, Best-Corrected visual acuity; CNV, choroidal neovascularization; CST, central subfield thickness; ETDRS, Early Treatment Diabetic Retinopathy Study; VEGF, vascular endothelial growth factor

Geographic Atrophy is a Large and Growing Retinal Disease, CFH Dysfunction & Activation of the Complement Pathway Implicated

Geographic Atrophy (GA)

Activated microglia

cell atrophy

Activated

macrophage

RPE atrophy

Drusen Thinning

Bruch's

membrane

MAC

- ~2.5 million prevalence U.S./EUMM¹
- CFH dysfunction amplifies activation of the alternative complement pathway^{2,3} Photoreceptor
 - CFH variants with reduced 0 function are a validated genetic risk factor for GA.~75%⁴ of AMD patients carry a high-risk variant
 - Current treatments reduce the rate of growth in GA lesions but **require** monthly or bimonthly intravitreal injections^{5,6}

GA, geographic atrophy; EUMM, EU major markets; CFH, complement factor H; MAC, membrane attack complex; RPE, retinal pigment epithelium.

1. Rein, D. et al. JAMA Ophthalmol. 2022;140(12):1202-8 2. Manuelian et al. J Clin Invest 2003;111:1181-90. 3. Prosser et al. J Exp Med 2007;204:2277-83. 4. Goverdhan, S.V. et al. Exp (Lond) 2008; 22(6): 849-54. 5. Syfovre [package insert]. Apellis Pharmaceuticals. 6. Izervay [package insert]. Iveric Bio, Inc.

GAZE

4D-175 Solution: Intravitreal Gene Therapy for Geographic Atrophy

Biological Rationale

- Clinically validated retinotropic AAV vector (R100)
- Codon-optimized sequence encoding a highly functional, shortened form of human complement factor H (sCFH)
- Ubiquitous promotor to drive transgene expression
- <u>Therapeutic objective</u>: Restore normal complement regulation in the retina through durable expression of sCFH
 - Phase I GAZE Dose Exploration expected to begin enrolling in QI 2025

4D-175: sCFH-Transgene Payload

I. Moore et al. IOVS 2001;42:2970-5. 2. Bok et al. IOVS 1985;26:1659-94. GA, geographic atrophy; IVT, intravitreal; RPE, retinal pigment epithelium

Short-form Complement Factor H (sCFH) is Highly Functional Compared to Full-Length

3. Bok et al. IOVS 1985;26:1659-94.

Target sCFH Concentration Levels Reached in Non-Human Primate Ocular Pharmacodynamics and Tolerability Study

*Day 15 following IVT administration of 4D-175. [†]Target mean AH CFH concentration [1]. [‡]1E10 vg/eye; tissue concentrations assessed at necropsy. [¶]Uveitis score (3E10 and 1.5x10¹¹ vg/eye; n=3 animals per group). 1. Altay et al. *Eye* 2019;33:1859–64.

Rapidly Advancing Development in Large Market Ophthalmology Indications with the R100 Platform

Modular Vector: AI0I

- 4D-710: Cystic Fibrosis Lung Disease
- 4D-725: Alpha-I Antitrypsin Deficiency Lung Disease

A101: Next-Gen Aerosolized Genetic Medicine Vector for Pulmonology

Prior aerosol gene therapy trials failed to achieve transgene expression in lung^{1,2}; potential limitations:

- × Poor mucus penetration
- × Inefficient airway cell transduction
- × Suboptimal tissue tropism
- Susceptibility to clearance by human AAV immunity

A101 invented at 4DMT to overcome these limitations:

- Mucus penetration efficient
- Transgene expression efficient
- Transduction of multiple airway cell types
- ✓ Specificity for lung (>99.9%)
- Resistance to pre-existing human AAV immunity

I. Aitken ML et al. Hum Gene Ther 2001; 12:1907–16. 2. Moss RB et al. Chest 2004;125:509–21.

4D-710	CF Lung Disease (mod. inelig/intol.)	~15K WW		
40-710	CF Lung Disease (on modulators)	~90K WW		
4D-725	AIAT Deficiency Lung Disease	~200K U.S./EU		

CF Lung Disease Has High Unmet Medical Need Despite Modulators

Disease Burden

- Dysfunctional cystic fibrosis transmembrane conductance regulator (CFTR) protein → inability to transport chloride at the apical membrane → thickened mucus
- Lung disease: inflammation, infections, respiratory failure
- Lung function (ppFEV₁) annual decline: -1 to -2.3%^{1*,2}
- Median survival (Pre-modulators): ~40 years³

Epidemiology

- ~105,000^{4,5} prevalence worldwide:
 - ~40,000 prevalence in U.S. alone
 - \circ ~1,000 incidence in U.S. alone

Standard of Care

- Daily Supportive Care:
 - Airway clearance (~100 mins)
 - Inhaled antibiotics & bronchodilators
- Disease modifying CFTR modulators:
 - **\$9.9 billion** annually (2023)⁶

Illustration by Frank Forney. © 2016 Cengage Learning *Estimate based on *DF508* homozygous population, which appears to have a similar rate of decline as Class I (null) variant population. I. Konstan MW et al. *Lancet Respir Med* 2017; 5:107–18. 2. Caley et al. Journal of Cystic Fibrosis 2021;20:86–90. 3. Ramsey & Welsh. *Am J Respir Crit Care Med* 2017;195(9):1092–9. 4. Guo J et al. *Journal of Cystic Fibrosis* 2022; 21:456-62. 5. Cystic Fibrosis Foundation. 6. Vertex Pharmaceuticals FY 2023 financial results. ppFEV1, percent predicted forced expiratory volume in 1 second.

Highest Unmet Need in ~35K People with Cystic Fibrosis

4D-710 has the Potential to Treat Cystic Fibrosis Lung Disease Regardless of Genetic Variant

CFTR, cystic fibrosis transmembrane conductance regulator. I. Based on assumptions derived from Middleton, 2019 and CFF registry analysis.

VAEROW

Phase I/2 Designed to Identify Doses for Late-Stage Development

Generate Safety, Biomarker & Clinical Activity Data to Inform Selection of Phase 2 & 3 Dose

*28-day taper. †Endobronchial biopsy (4D-710 transgene and protein expression), pending protocol amendment to allow for 2nd biopsy beyond 12 months. ppFEV1, percent predicted forced expiratory volume in 1 second; SRT, Safety Review Team.

AEROW To-Date Enrolled pwCF Ineligible or Intolerant to Modulators with a Broad Range of Disease Activity, 5 with Pre-Existing Immunity to AI01

	2E15 vg			IEI5 vg			5EI4 vg		2.5E14 vg	
Participant #	I	2	3	4	I	2	3	I	2	1
Age, y	37	27	32	69	36	24	20	42	39	25
Sex	Female	Male	Female	Female	Male	Male	Female	Female	Female	Male
Race/Ethnicity	Non-Hispanic White	Non-Hispanic Black	Non-Hispanic White							
CFTR modulator status	Ineligible	Ineligible	Ineligible	Intolerant	Intolerant	Ineligible	Ineligible	Intolerant	Ineligible	Ineligible
Historical Sweat chloride, mmol/L†	84	96	103	114	74	103	110	107	134	120
ppFEV ₁	90	56	80	86	83	69	95	100	77	58
CFQ-R-R score	78	72	89	78	72	61	83	72	78	28
Anti-A101 Ab	Negative	Negative	Negative	Negative	Positive	Negative	Positive	Positive	Pending	Negative
A101-specific T cells	Positive	Negative	Negative	Negative	Negative	Positive	Positive	Pending	Pending	Pending

Best available data as of May 24, 2024. [†]Sweat chloride normal range ≤29 mmol/L, Diagnosis of Cystic Fibrosis: Consensus Guidelines from the Cystic Fibrosis Foundation (2017). pwCF = people with cystic fibrosis; CFTR, cystic fibrosis transmembrane conductance regulator; CFQ-R-R, Cystic Fibrosis Questionnaire–revised respiratory domain; NAb, neutralizing antibodies.

Aerosolized 4D-710 (Up to 1E15 vg) Was Well Tolerated

- Administration of aerosolized 4D-710 well tolerated
 - No dose-limiting toxicities
 - No 4D-710–related SAEs
 - No clinically significant 4D-710-related adverse events after administration
- No inflammation or toxicity in lung biopsies samples

Best available data as of May 24, 2024.

Dose-dependent CFTR ΔR RNA Expression Following 4D-710 Administration

CFTR ΔR RNA (ISH): mean % (+) airway epithelial cells

- Dose-dependent CFTR AR mRNA expression in bronchial epithelial cells
- No CFTR AR mRNA expression observed in commercial non-CF and CF lung samples
- Commercial non-CF samples positive for endogenous CFTR mRNA expression

Best available data as of May 24, 2024. Quantification by Visiopharm® AI Machine Learning Analysis. Number shown below each group indicates the number of lung samples. *Attempts to genotype commercial CF samples yielded results for 13/35 samples; of these, a majority were ΔF508 homozygous mutations. CFTR, cystic fibrosis transmembrane conductance regulator; ISH, in situ hybridization.

Widespread 4D-710–Mediated CFTR Protein Expression at All Doses and in All Participants

Best available data as of May 24, 2024. Quantification by Visiopharm AI Machine Learning Analysis. Number shown below each group indicates the number of lung samples. *H-score. †Attempts to genotype commercial CF samples yielded results for 13/35 samples; of these, a majority were ΔF508 homozygous mutations. IHC, immunohistochemistry.

Widespread & Consistent CFTR Protein Expression: 100% of Samples

4D-710 Treated

4DMT © 2024 4D Molecular Therapeutics. All Rights Reserved.

CFTR Protein Expression Observed in Multiple Airway Cell Types

CFTR Protein Expression (IHC) Following Administration of 4D-710: Secretory, Ciliated & Basal Cells

CFTR Protein Expressed in Multiple Cell Types*

(1) Basal cells (2) Goblet cells (3) Columnar ciliated cells

Localization to Apical Region[†]

Best available data as of May 24, 2024. *Image from IE15 vg participant. †Images from 2E15 vg participants. CFTR, cystic fibrosis transmembrane conductance regulator. IHC, immunohistochemistry.

Two of Three Participants with Mild to Moderate ppFEV₁ Impairment at Baseline Showed Improvement at 12 Months

- Three participants had a baseline ppFEV₁ ≤80% and >6 months of follow up
- Two showed improvement in ppFEV₁ at 12 months
 - 2EI5 vg (n=1):+6%
 - IEI5 vg (n=1):+5%

Respiratory-related adverse events*: O Pulmonary exacerbation O Viral respiratory infection O Pneumonitis

Best available data as of May 24, 2024.

YAEROW

4D-710 (IEI5 vg): Durable Improvement in CFQ-R-R Score

CFQ-R Respiratory Symptom Score

Mean Change in CFQ-R-R Score

Best available data as of May 24, 2024. *Respiratory-related adverse event within 21 days of assessment. †All enrolled participants (n=3). ‡Excludes participants with a respiratory-related event within 21 days of assessment. CFQ-R-R, Cystic Fibrosis Questionnaire-Revised (respiratory symptoms scale). Scores range from 0 to 100, with higher scores indicating better health. MCID=4 points [1]. 1. Quittner AL et al. Chest 2009;135:1610–18.

Totality of Clinical & Biomarker Data To-date Supports IEI5 vg as Intended Phase 2 Expansion Dose, 5E14 vg Dose Pending Additional Follow-Up

Dose Selec	tion Criteria:	Target Profile	2EI5 vg (n=4)	IEI5 vg (n=3)	5EI4 vg (n=I)	2.5EI4 vg (n=I)
	CFTR∆R RNA expression (ISH)	≥I5% cells ^{1,2}	\checkmark	\checkmark	\checkmark	×
	CFTR protein expression (IHC)	≥I5% cells ^{1,2}	\checkmark	\checkmark	\checkmark	\checkmark
Expression Cell types transduced Pre-existing A101 Immunity	Basal cells & secretory cells	\checkmark	\checkmark	\checkmark	\checkmark	
	Cell types transduced	No/limited expression in interstitial cells	×	\checkmark	\checkmark	\checkmark
	No effect on expression	\checkmark	\checkmark	\checkmark	Pending	
Safety & Tolerability	Safety & tolerability	No ≥Grade 3 related AEs, No related SAEs	×	\checkmark	\checkmark	\checkmark
	ppFEV ₁ (at 6-12 months)	>4.5% change from baseline	\checkmark	\checkmark	Pending	Pending
Clinical Activity	CFQ-R-R (at 6-12 months)	>4 points change from baseline	Not interpretable	\checkmark	Pending	Pending
Best available data as of May 24, 2024				Cleared	Pending	

*Both events reported by one study participant (Participant 2) 1. Dannhoffer L et al. Am J Respir Cell Mol Biol 2009; 40:717-23. 2. Bell S et al. Lancet Resp Med 2020; 8:65-124.

Pulmonology Pipeline Key Expected Milestones

VECTOR DELIVERY	PRODUCT CANDIDATE	INDICATION	EPIDEMIOLOGY (PREVALENCE)	IND- ENABLING	PHASE I/2	PHASE 3	EXPECTED UPCOMING MILESTONES
	01	Cystic Fibrosis Lung Disease (modulator ineligible / intolerant)	~15K WW		AEROW		 Phase I interim update (N=10) Mid-2025 Interim data & program update
PULMONOLOGY AIOI Aerosol		Cystic Fibrosis Lung Disease (on-modulators)	~90K WW	AEROV	V		 Mid-2025 Program update
	4D-725	AIAT Deficiency Lung Disease	~200K U.S./EUMM				 Early Jan 25 Program update

Vector: CI02

• **4D-310:** Fabry Disease Cardiomyopathy

C102 & 4D-310 Designed for Low Dose IV Delivery to the Heart

Cardiac disease is the most common cause of death (75%)¹ in Fabry disease

Current therapies do not adequately address Fabry-related cardiovascular manifestations²⁻⁵

- × ERT does not improve cardiac function⁶
- Nominal effect on exercise capacity with migalastat in patients with amenable GLA variants⁷ (~35% of patients)⁸
- No therapy has been shown to clear accumulated Gb3 from cardiomyocytes
- Significant unmet medical need

AGA, a-galactosidase A; Gb3, globotriaosylceramide; AAV, adeno-associated virus.

1. Baig S et al. Europace 2018;20:153–61. 2. Waldek S et al. Genet Med 2009;11:790–796. 3. Banikazemi M et al. Ann Intern Med 2007;14:77–86. 4. Tsukimura T et al. Mol Genet Metab Rep 2020;25:100650. 5. Azevedo O et al. Int J Mol Sci 2021;22:4434. 6. Lobo T et al. Intern Med J 2008;38:407–14. 7. Camporeale A et al. J Med Genet 2023;60:850–8. 8. Hughes et al. J Med Genet. 2017;54:288–96.

4D-310 Unique MOA Well-Differentiated Versus ERT & Genetic Medicines for Fabry Disease Cardiomyopathy

		ERT (Blood)	Genetic	Medicine
MOA	Product Design	AGA Enzyme Infusions	PEGylated AGA	AAV-mediated Liver-directed	4D-310
AGA Delivery Through the	Pharmacokinetics Normal * Time of dose * Lifelong	Biweekly IV Dosing	Biweekly IV Dosing	Single IV Dose	Single IV Dose
Bloodstream	Single dose administration	_	—	+	+
	Liver secretion of AGA	_	_	+	+
Cardiovascular	Heart (cardiomyocytes)	-	_	_	+
Treatment & AGA	Kidney (glomeruli, including podocytes)	_	_	_	+
Production in Target Cells	Blood vessels	_	_	_	+
Antibody	Intracellular production in target tissues (anti-AGA antibody avoidance)	-	-	_	+
Resistance	Capsid evolved for resistance to preexisting NAb	—	_	_	+

Abbreviations: Ab, antibodies; AGA, aspartylglucosaminidase; AAV, adeno-associated virus; ERT, enzyme replacement therapy; IV, intravenous.

Phase I/2 Open Label Clinical Trials: 4D-310 for Fabry Disease Cardiomyopathy

	INGLAXA-1	INGLAXA-2		
Geography	U.S. multicenter (Currently on Clinical Hold)	Taiwan & Australia multicenter		
Patient Population	Male or female adults; classic or late onset Fabr	ry disease; cardiac involvement [*] (on or off ERT)		
4D-310 Dose	IEI3 vg/kg	IV infusion		
Immune Regimen	Amending to rituximab & sirolimus (R/S)			
Primary Endpoint	Safe	ety		
Secondary Endpoints	Cardiac imaging, fu	Inction, QoL status		
Cardiac Biopsy Endpoints	n.a.	Transgene delivery, RNA expression & AGA protein expression		
C102 NAb Screening	Exclude high titer NAb to C102 (>1:1,000)			
AGA Ab Screening	Exclude high titer antiboo	dies to AGA (≥1:25,000)		

*Eligibility for INGLAXA-2 required evidence of left ventricular hypertrophy on ECHO or CMR within 12 months prior to screening. AGA, a-galactosidase A; ERT, enzyme replacement therapy; NAb, neutralizing antibody.

Cardiac Assessments: Multiple Diverse Endpoints

Study Assessment	Method	Time Points
Transgene delivery & expression, Gb3 accumulation Exploratory endpoint (INGLAXA 2)	Cardiac Biopsy*	Weeks 6, 26
Cardiac contractility (global longitudinal strain) FDA-recommended supportive endpoint	Echocardiogram [†]	Months 6, 9, 12, 18, 24
Exercise capacity (peak VO ₂) FDA-recommended primary endpoint	CPET [†]	Months 6, 9, 12, 18, 24
Cardiac quality of life (physical limitations, symptoms) FDA-recommended primary endpoint	KCCQ	Months 6, 9, 12, 18, 24

*Transgene delivery assessed by qPCR; transgene RNA expression analyzed by RT-qPCR and *in situ* hybridization; AGA protein evaluated by immunohistochemistry; Gb3 accumulation in cardiomyocytes evaluated by electron microscopy and image analysis. †Assessed by independent central reading center.

CPET, cardiopulmonary exercise test; KCCQ, Kansas City Cardiomyopathy Questionnaire; MRI, magnetic resonance imaging.

Baseline Patient Characteristics

		INGL	AXA I		INGLAXA 2	
Characteristic	Patient I	Patient 2	Patient 3	Patient 4	Patient 5	Patient 6
Disease classification	Classic	Classic	Classic	Late onset	Late onset	Late onset
GLA variant	c.1023A>C	c.708G>T	c.974G>A	c.671A>G	IVS4+919 G>A	c.644 A>G
Serum AGA activity, nmol/hr/mL [*]	0.42	0.00	0.30	0.06	1.62	0.18
Serum lyso-Gb3, ng/mL [†]	6.28	101.0	8.78	45.0	3.79	3.2
ERT experience	Yes	Yes	Yes	No	Yes	Yes
ERT status at enrollment	On	Off	On	Naïve [¶]	On	Off [¶]
Anti-AGA antibody titer	1:947	1:99,900	1:13,900	Negative	Negative	Negative
Peak VO ₂ , % predicted	na	33.0	66.I	30.3	76.0	120.2
Global longitudinal strain, %	-17.10	-22.17	-18.83	-23.27	-21.95	-20.63
Left ventricular mass index, g/m ²	86.7	81.8	67.8	73.1	58.4	105.9

*Reference range, 4.44–27.42 nmol/hr/mL. [†]Reference range, <1.0 ng/mL. [‡]Reference range, >60 mL/min/1.73m². ¹On migalastat at enrollment. LVMI normal range, 49–85 g/m². AGA, α-galactosidase A; eGFR, estimated glomerular filtration rate; ERT, enzyme replacement therapy; Gb3, globotriaosylceramide; NR, not reported.

Cardiac Biopsy: Robust & Durable Transgene Expression in Cardiomyocytes

- Single participant with repeated cardiac biopsy (Weeks 6 & 26)*
- No inflammation
- Paired analysis of biopsies demonstrated widespread transduction & durable transgene expression
 - Genome delivery (qPCR)
 - RNA expression (ISH, RT-qPCR)
 - AGA protein (IHC)
- 4D-310 transgene expression observed predominantly in cardiomyocytes

*Male (57 y) with late-onset Fabry disease. †Calculated based on an estimated 30% ratio of cardiomyocytes to total heart cells. IHC, immunohistochemistry; ISH, in situ hybridization; qPCR, quantitative polymerase chain reaction; RT-qPCR, reverse transcription-qPCR.

Cardiac Biopsy: Reduction in Gb3 Substrate Accumulation in Cardiomyocytes

Mean Gb3 Inclusion Body Volume per Cardiomyocyte

Ultra-high resolution electron microscopy & image analysis used to identify cardiomyocytes & quantify the volume of Gb3 inclusions¹

Point grid superimposed on cardiomyocytes for estimation of Gb3 inclusion volume. White arrow, Gb3 inclusion; asterisk, interstitium [1].

No approved therapy has been shown to clear accumulated Gb3 from cardiomyocytes in Fabry disease patients

*Male (57 yr) with late-onset FD (IVS4+919G>A). †Sample collected prior to enrollment and analyzed independently by investigator [1]. I. Chang et al. 2023.12.09.23298489; doi: https://doi.org/10.1101/2023.12.09.23298489

Global Longitudinal Strain: Ventricular Function Improved or Stable in All Evaluable Participants

			Ch	ange from Baseline	(%)
Patient	Basel	ine (Screening)	Month 6	Month 12	Month 24
I	-17.10	Borderline	-1.1	-2.5	-2.9
3	-18.83	Low normal	-0.5	-3.3	-2.8
2*	-22.17	Normal	na	-1.1	na
5	-21.95 [‡]	Normal	na¶	-I.2 [‡]	
6	-20.63	Normal	-0.4	-0.3	
Historical ERT [†]	-13.2			+1.1	—

GLS was measured in 3 apical views (4-, 3- and 2-chamber); the average value is shown.

GLS range (borderline), -16.0 to -18.0% [1]; Minimal detectable difference, 1.5% [2].

*High antibody titer, entered study off ERT.

[†]Mean value, historical control (N=18); median duration of ERT, 4.2 years (range, 1.4–12.2) [3].

[‡]GLS average of 4- and 2-chamber views (3-chamber view not available)

[¶]Not evaluable.

I. Yang H et al. JACC Cardiovasc Imaging 2018;11:1196–1201. 2. Lambert J et al. Heart 2020;106:817–23. 3. Nordin S et al. Circ Cardiovasc Imaging 2019:e009430.

Cardiopulmonary Exercise Testing: Durable Improvement in Peak VO₂ in 3 of 4 Evaluable Participants

			C	hange from Basel	ine
Patient	Measurement	Baseline	Month 6	Month 12	Month 24
Ι	mL/kg/min (% predicted)	na	nc*	+ 2.0 [†] (+6.3) [†]	+ 7.8 [†] (+24.6) [†]
2‡	mL/kg/min (% predicted)	14.0 (33.0)	na	+ 7.0 (+17.0)	na
3	mL/kg/min (% predicted)	23.0 (66.1)	+0.4 (-0.3)	-2.2 (-7.8)	-4.1 (-15.6)
5	mL/kg/min (% predicted)	24.8 (76.0)	+ 2.6 (+9.4)	+ I.8 (+8.3)	
listorical ERT [¶]	mL/kg/min	24.1		-1.8	-2.3

Minimal clinically important difference, 1.5 mL/kg/min [1].

*Not calculable (missing baseline data).

[†]Calculated as change from Month 6 values (21.4 mL/kg/min, 72% predicted).

[‡]High antibody titer, entered study off ERT.

[¶]Mean value, historical control (N=14); median duration of ERT, 48 months [2].

1. Wilkinson. Am J Phys Med Rehabil 2019;98:431. 2. Lobo T et al. Intern Med J 2008;38:407–14.

Kansas City Cardiomyopathy Questionnaire (KCCQ): Improved or Stable QoL in All Evaluable Participants

Scores range from 0 to 100 (higher score=less severe); minimal clinically important difference (overall summary score), 5 points [1]. *High antibody titer; entered study off ERT. 1. Spertus JA et al. JACC 2020;76:2379–90.

Considerable Inter- and Intrasubject Variability in Serum Biomarkers, No Correlation with Cardiac Outcomes

Cardiac Outcomes (Patient 2)

Outcome	Baseline	Month 12	Change
Peak VO ₂ (mL/kg/min)	14.0	21.0	+7.0
Peak VO ₂ (% predicted)	33.0	50.0	+17.0
GLS (%)	-22.17	-23.27	-1.1
KCCQ Clinical Summary score Overall Summary score	59.9 57.6	65.6 69.3	+5.7 +11.7

 Consistent with 4D-310 design characteristics, no correlation observed between serum AGA activity and cardiac outcomes

*High antibody titer (1:99,900) at baseline, entered study off ERT. Serum AGA normal range, 4.44–27.42 nmol/hr/mL (depicted as shaded area on graph). Lyso-Gb3 normal range, ≤1.0 ng/mL AGA, α-galactosidase A; Lyso-Gb3, globotriaosylsphingosine.

Program Expectations & Cash Position

Strong Cash Balance to Execute Through Key Near-Term Expected Milestones

Large Market Ophthalmology		✓ 24-week landmark from Phase 2a Dose Expansion (N=51) at Angiogenesis: February 3, 2024			
Opintilainiology		✓ 24-week landmark Phase 2b Population Extension (N=45) at ASRS: July 17, 2024			
	4D-150 Wet AMD	 4D-150 Wet AMD Development Day: September 18, 2024 Interim longest available follow up data through up to 2.5 years from PRISM Ph1/2a, 2b cohorts Final 4FRONT Phase 3 clinical trial design update 			
		52-week landmark from Phase 2b Population Extension: February 2025			
		Initiation of Phase 3 4FRONT-1 clinical trial: Q1 2025			
	4D-150 DME	SPECTRA clinical trial program update: Early January 2025			
	4D-175 GA	 ✓ IND filing: Q2 2024 Begin enrollment of Phase I GAZE clinical trial: Q1 2025 			
Pulmonology	4D-710 CF	Interim data & program update from AEROW clinical trial: Mid-2025			
Cash Balance		\$551M cash as of September 30, 2024 (Unaudited); Runway into HI 2027			

THANKYOU

5858 Horton Street, Suite 455 | Emeryville, California 94608

(510) 505-2680 | Investor.Relations@4DMT.com

IR.4DMT.com | LinkedIn

© 2024 4D Molecular Therapeutics. All Rights Reserved.